Carotenoids and related polyenes. Part 6. ${ }^{1}$ Stereoselective synthesis of astaxanthin analogues and their antioxidant activities

Yumiko Yamano, ${ }^{a}$ Yuki Sato, ${ }^{a}$ Yasuko Watanabe, ${ }^{,}$Koshi Namikawa, ${ }^{b}$ Wataru Miki ${ }^{b}$ and Masayoshi Ito *a
${ }^{a}$ Kobe Pharmaceutical University, Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan
${ }^{b}$ Suntory Institute for Fundamental Research, Wakayamadai, Shimamoto, Mishima, Osaka, 618-8503, Japan

Received (in Cambridge, UK) 16th May 2001, Accepted 21st June 2001
First published as an Advance Article on the web 31st July 2001

Astaxanthin analogues having various lengths of polyene chains are stereoselectively synthesized and their singlet-oxygen-quenching activities are examined.

Introduction

Carotenoid pigments are widely distributed in Nature, where they play an important role in protecting cells and organisms against photosensitized oxidation. ${ }^{2}$

Astaxanthin 1 (Fig. 1), one of the dominant carotenoids in marine animals, has become the center of attention due to its extremely strong antioxidant activities. ${ }^{3}$ These strong activities are considered ${ }^{3}$ to be profoundly related to the 3 -hydroxy-4 oxo- β-end-groups \dagger conjugated to the polyene system in astaxanthin. Antioxidant activity should be also concerned with the length of the conjugated double-bond system in carotenoids. Thus, in order to clarify their structure-activity relationships, especially the relationship between the activity and the length of the conjugated double-bond system, we have synthesized astaxanthin analogues 2a-d having various polyene chains and

2a $P=\cdots$

$3 \mathrm{R}=\mathrm{CHO}$
4a $\mathrm{R}=\mathrm{CH}_{2} \mathrm{P}^{+} \mathrm{Ph}_{3} \mathrm{Br}^{-}$
4b $\mathrm{R}=\mathrm{CH}_{2} \mathrm{P}^{+} \mathrm{Bu}_{3} \mathrm{Br}^{-}$

Fig. 1

[^0]examined their quenching activities against singlet oxygen. These analogues were stereoselectively synthesized using the C_{15}-building block 3 or $\mathbf{4 b}$, both of which were prepared in a stereoselective manner via the palladium-catalyzed reaction of the vinylstannane 9 or the terminal alkyne 6 with the readily available ${ }^{4}$ vinyl bromide $\mathbf{1 0}$ (Schemes 1 and 2).

Results and discussion

Synthesis of 3 and 4 via Stille coupling reaction

Treatment of the known ketone 5^{5} with lithium trimethylsilyl(TMS)acetylide followed by deprotection afforded the terminal alkyne 6 as a single product ${ }^{6}$ in 98% yield (Scheme 1). Heating the alkyne 6 at $120^{\circ} \mathrm{C}$ for 2 h with 1.5 equiv. of tri- n-butyltin hydride in the presence of a catalytic amount of azoisobutyronitrile (AIBN) ${ }^{7}$ provided a mixture of the E-vinylstannane 7a (40%) and its Z-isomer 7b (38%), which were cleanly separated by column chromatography. The Z-isomer 7b was converted to a mixture of 7a (67\%) and 7b (22%) by treatment with tri- n-butyltin hydride under the same conditions. On the other hand, the palladium-catalyzed hydrostannylation ${ }^{7}$ of the alkyne 6 predominantly provided E-vinylstannane 7 a in 68% yield which, on treatment with acid (92%) followed by acetylation (97%), was converted to compound 9 via $\mathbf{8}$. The regio- and stereochemical structures of these vinylstannanes 7a, 7b, $\mathbf{8}$ and $\mathbf{9}$ were deduced from ${ }^{1} \mathrm{H}$ NMR data (see Experimental section), especially from coupling patterns $J_{\mathrm{HH}}, J\left({ }^{17} \mathrm{SnH}\right), J\left({ }^{19} \mathrm{SnH}\right)$ of the vinylic protons. ${ }^{7,8}$
Among vinylstannanes $\mathbf{7 a}, \mathbf{8}$ and $\mathbf{9}$, only the acetate $\mathbf{9}$ reacted with the vinyl bromide $\mathbf{1 0}^{4}$ under the standard conditions reported by Stille ${ }^{9}$ (Table 1, run 2) to yield the desired coupled product 11, stereoselectively. However, in this reaction, homodimer $\mathbf{1 2}$ was a major product, even though the reaction flask and solvent were carefully deoxygenated. Thus, the reaction conditions (catalyst, ligand, and solvent) were next examined (Table 1). $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ was not effective for this coupling reaction (run 1). Moderate yields of $\mathbf{1 1}$ were achieved by use of tris(dibenzylideneacetone)dipalladium $\left(\mathrm{Pd}_{2} \mathrm{dba}_{3}\right)$ in N -methyl-pyrrolidin-2-one (NMP) (run 5) or by combined use of $\mathrm{Pd}_{2} \mathrm{dba}_{3}$ and AsPh_{3} (ligand) ${ }^{10}$ in either DMF or NMP (run 6, 7). Oxidation of 11 with active $\mathrm{MnO}_{2}(72 \%)$ and subsequent methanolysis (81%) afforded the C_{15}-aldehyde $\mathbf{3}$ without stereomutation. Direct methanolysis of $\mathbf{1 1}$ provided C_{15}-alcohol $\mathbf{1 4}$ (57%), which was allowed to react with hydrogen bromide ${ }^{11}$

Table 1 Coupling reaction of the vinylstannane 9 with the vinyl bromide $\mathbf{1 0}^{a}$

Run	Catalyst(mol\%)	Conditions	Yield/ $\%{ }^{\text {b }}$	
			11	12
1	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3)$	DMF, rt, 24 h		
2	$\mathrm{PdCl}_{2}(\mathrm{MeCN})_{2}(10)$	DMF, rt, 24 h	20	25
3	$\mathrm{PdCl}_{2}(\mathrm{MeCN})_{2}(6)$	NMP, $50{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}$	20	29
4	$\mathrm{Pd}_{2} \mathrm{dba}_{3}(3)$	DMF, $50{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}$	19	
5	$\mathrm{Pd}_{2} \mathrm{dba}_{3}$ (3)	NMP, $50^{\circ} \mathrm{C}, 24 \mathrm{~h}$	46	
6	$\mathrm{Pd}_{2} \mathrm{dba}_{3}(3), \mathrm{AsPh}_{3}(24)$	DMF, $50^{\circ} \mathrm{C}, 24 \mathrm{~h}$	55	17
7	$\mathrm{Pd}_{2} \mathrm{dba}_{3}$ (3), $\mathrm{AsPh}_{3}(24)$	NMP, $50^{\circ} \mathrm{C}, 24 \mathrm{~h}$	54	22
${ }^{a} 2$ equiv. of vinyl bromide $\mathbf{1 0}$ were used. ${ }^{b}$ Isolated yield.				

iii $\mid \|_{\text {ii }} \downarrow$

Scheme 1 Reagents and conditions: i, n - BuLi , TMS-acetylene; then $10 \% \mathrm{KOH}:$ ii, $\mathrm{Bu}_{3} \mathrm{SnH}$, cat. AIBN, $120^{\circ} \mathrm{C}$; iii, $\mathrm{Bu}_{3} \mathrm{SnH}$, cat. $\mathrm{PdCl}_{2}-$ $\left(\mathrm{PPh}_{3}\right)_{2}$; iv, aq. $\mathrm{H}_{2} \mathrm{SO}_{4}$; v, $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{Py}$; vi, cat. $\mathrm{NaOMe}, \mathrm{MeOH}$; vii, MnO_{2}; viii, $48 \% \mathrm{HBr}$; then $\mathrm{PPh}_{3} ;$ ix, $48 \% \mathrm{HBr}$; then PBu_{3}.
followed by treatment of the intermediate bromide with triphenylphosphine ${ }^{11}$ or tri- n-butylphosphine to give the C_{15} Wittig salt $\mathbf{4 a}{ }^{11}$ or $\mathbf{4 b}$, respectively.

Table 2 Coupling reaction of terminal alkyne 15 with the vinyl bromide $\mathbf{1 0}^{a}$

Run	Modification	Yield/ $\%{ }^{\text {b }}$		
		17	18	
1	none	46	43	
2	BHT ($20 \mathrm{~mol} \%$)	46	43	
3	degassing	67	33	
4	degassing + BHT ($5 \mathrm{~mol} \%$)	76	24	
5	degassing + BHT (10 mol\%)	70	30	
" The reaction was carried out at rt in benzene using $4.5 \mathrm{~mol} \%$ of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ and $24 \mathrm{~mol} \%$ of CuI as catalysts in the presence of $\mathrm{Et}_{2} \mathrm{NH}$ (2.3 equiv.). 1.5 equiv. of vinyl bromide $\mathbf{1 0}$ were used. ${ }^{b}$ Isolated yield.				

Scheme 2 Reagents and conditions: i, aq. $\mathrm{H}_{2} \mathrm{SO}_{4}$; ii, $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{Py}$; iii, cat. $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{Et}_{2} \mathrm{NH}, \mathrm{CuI}, \mathrm{BHT}$, degassing; iv, LiAIH_{4}, cat. NaOMe; v, MnO_{2}.

Synthesis of 3 and 4 via Sonogashira coupling reaction

We first investigated the Sonogashira coupling ${ }^{12}$ of the terminal alkyne 15 (Scheme 2), prepared (84%) by acid hydrolysis of $\mathbf{6}$, with the vinyl bromide $\mathbf{1 0}$ (Table 2). Coupling reaction between 15 and 10 by use of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\left(4.5 \mathrm{~mol}_{\%} \%\right)$ and $\mathrm{CuI}(24 \mathrm{~mol} \%)$ in the presence of $\mathrm{Et}_{2} \mathrm{NH}$ (2.3 equiv.) in benzene gave the crosscoupling product $17,{ }^{11}$ accompanied by a serious amount of the alkyne dimer 18 (run 1). Negishi ${ }^{13}$ described how either degassing via freeze-thaw cycles or addition of an antioxidant such as 2,6-tert-butyl-4-methylphenol (BHT) was effective in the formation of cross-coupling products. In our case, addition of BHT was not so effective (run 2), but degassing apparently improved the yield of $\mathbf{1 7}$ (run 3). The best conditions were obtained by degassing in the presence of BHT ($5 \mathrm{~mol} \%$) (run 4). On the other hand, coupling reaction of the acetate $\mathbf{1 6}$ with $\mathbf{1 0}$
under the optimized conditions yielded the cross-coupling product 19 in high yield (95%) as the sole product. Thus, the hydroxy group at the C-3 position of the alkyne $\mathbf{1 5}$ might cause the side reaction.

Then, the alkyne $\mathbf{6}$ reacted with $\mathbf{1 0}$ under the optimized conditions to give the cross-coupling product 20 in 86% yield. This α-acetylenic alcohol 20 was then stereoselectively converted to the C_{15}-aldehyde 3 (83% from 20 via 21) and the alcohol 14 (65% from 20) via hydroalumination using LiAlH_{4} in the presence of $10 \mathrm{~mol} \%$ of sodium methoxide. ${ }^{14}$ The alcohol $\mathbf{1 4}$ could be converted to the C_{15}-Wittig salts $\mathbf{4 a}, \mathbf{b}$ as shown in Scheme 1.

Synthesis of astaxanthin analogues 2a-d

The C_{15}-triphenylphosphonium salt $\mathbf{4 a}$ (Fig. 1) was previously prepared ${ }^{11}$ in the synthesis of astaxanthin $\mathbf{1}$. Wittig condensation of the phosphonium salt 4 a with 2,7-dimethylocta-$2,4,6$-triene-1,8-dial was conducted ${ }^{11}$ to give a mixture of E / Z-isomers of astaxanthin, from which the all- E-isomer has been isolated by isomerization and crystallization. It was reported ${ }^{15}$ that Wittig reaction of aldehydes with tri- n butylphosphonium salts provided dominantly E-olefins. Thus, Wittig reaction of the aldehyde $\mathbf{2 2}$ with the phosphonium salts $\mathbf{4 a}$ and $\mathbf{4 b}$ was carried out as a preliminary experiment.

The triphenylphosphonium salt $\mathbf{4 a}$ was condensed with the aldehyde 22 in the presence of sodium methoxide as a base to provide a non-separable mixture of isomers 23a and 23b in 85% yield (Scheme 3). This mixture was acetylated to afford the

Scheme 3
acetates $\mathbf{2 4}$, which could be cleanly separated by preparative HPLC (pHPLC) to give the all- E-isomer 24a (22% from 22) and the $11 Z$-one 24b (22% from 22). In contrast, Wittig condensation of the tri- n-butylphosphonium salt $\mathbf{4 b}$ with the aldehyde 22 stereoselectively afforded the all-E-pentaenone 23a in 73\% yield. Therefore, the tri- n-butylphosphonium salt $\mathbf{4 b}$ and bis-(tri- n-butylphosphonium) salts $\mathbf{2 5}{ }^{15 a}$ and $\mathbf{2 6}$ were used for the preparation of astaxanthin analogues 2a-d (Fig. 1) as shown in Scheme 4.
The analogue 2a was synthesized (70%) by Wittig reaction between the C_{15}-aldehyde $\mathbf{3}$ and the C_{15}-phosphonium salt $\mathbf{4 b}$. Analogues 2b (41%) and 2c (37%) were prepared by condensation of the aldehyde $\mathbf{3}$ with bis-Wittig salts $\mathbf{2 5}{ }^{15 a}$-and 26. The analogue $\mathbf{2 d}$ was prepared (42%) by Wittig reaction between the phosphonium salt $\mathbf{4 b}$ and the dialdehyde 27, which was obtained from the acetal-aldehyde $\mathbf{2 8}^{16}$ as shown in Scheme 4. These analogues 2a-d were all produced in a stereoselective manner.

Singlet-oxygen-quenching activities of astaxanthin analogues 2a-d

Finally, singlet-oxygen-quenching activities of astaxanthin analogues 2a-d (Fig. 1) having polyene chains of various

Fig. 2 Singlet oxygen quenching activites of astaxanthin 1 and its analogues $\mathbf{2 a - d}$.

lengths were examined according to the method using a thermodissociable endoperoxide ${ }^{17}$ of 1,4-dimethylnaphthalene as a singlet-oxygen-generator ${ }^{3 d}$ and 2,2,6,6-tetramethylpiperidine (TEMP), a spin-trap agent, as a detector ${ }^{18}$ of singlet oxygen.
Results are shown in Fig. 2. Analogues 2b-d showed strong quenching activities in agreement with astaxanthin $\mathbf{1}$; however, analogue 2a, having the shortest polyene chain, revealed low activity. It is found that the ability of astaxanthin analogues to quench singlet oxygen is strongly affected by the length of conjugated polyene chain.

Studies on the antioxidation mechanism of 3-hydroxy-4-oxo-β-end-groups conjugated to the polyene chain in astaxanthin are now in progress.

Experimental

Mps were measured on a micro melting-point apparatus (Yanagimoto) and are uncorrected. UV-visible spectra were recorded on a JASCO Ubest-55 instrument for ethanol solutions. IR spectra were measured on a Perkin-Elmer FT-IR spectrometer, model Paragon 1000, for chloroform solutions. ${ }^{1} \mathrm{H}$ NMR spectra at 300 or 500 MHz and ${ }^{13} \mathrm{C}$ NMR spectra at 75 or

125 MHz were determined on a Varian Gemini-300 or a Varian VXR-500 superconducting FT-NMR spectrometer, respectively, for deuteriochloroform solutions (tetramethylsilane as internal reference). J-Values are given in Hz . Mass spectra were taken on a Hitachi M-4100 spectrometer. Optical rotations were measured on a JASCO DIP-181 polarimeter ($[a]_{\mathrm{D}}$-values are in units of $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$). EPR spectra were recorded on a JEOL JES-FR30 spectrometer using the signal given by paramagnetic resonance of Mn^{2+} as an internal standard.

Column chromatography (CC) was performed on silica gel (Merck Art. 7734). Short-column chromatography (SCC) was conducted on silica gel (Merck Art. 7739) under reduced pressure. Preparative HPLC was carried out on a Waters Model 510 instrument with a UV-visible detector.

All operations were carried out under nitrogen or argon. Ether refers to diethyl ether except where specified otherwise, and hexane to n-hexane. NMR assignments are given using the carotenoid numbering system. Extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$.

(7aS)-5-Ethynyl-5,6,7,7a-tetrahydro-2,2,4,6,6-pentamethyl-benzo-1,3-dioxol-5-ol 6

A solution of $\operatorname{BuLi}\left(1.50 \mathrm{M}\right.$ in hexane; $21.4 \mathrm{~cm}^{3}, 32 \mathrm{mmol}$) was added to a solution of TMS-acetylene ($3.15 \mathrm{~g}, 32 \mathrm{mmol}$) in dry THF $\left(30 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ and the mixture was stirred for a further 30 min . To this mixture was added dropwise a solution of the ketone $5^{5}(4.50 \mathrm{~g}, 21 \mathrm{mmol})$ in dry THF $\left(30 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ and the mixture was stirred at room temperature for 2 h . After being quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$, the mixture was extracted with ether. The extracts were washed with brine, dried and evaporated to give a residue which, without purification, was dissolved in methanol ($30 \mathrm{~cm}^{3}$). Aq. $10 \% \mathrm{KOH}$ was added to this solution at $0^{\circ} \mathrm{C}$ and the mixture was stirred at room temperature for 30 min . The reaction mixture was diluted with ether and washed with brine. Evaporation of the dried solution gave a residue, which was purified by SCC (ether-hexane, $1: 4$) to afford the terminal alkyne $\mathbf{6}(4.97 \mathrm{~g}, 98 \%$ from 5$)$ as a colourless oil; $[a]_{\mathrm{D}}^{23}+178.4$ (c 0.97, EtOH); $\lambda_{\text {max }} / \mathrm{nm} 212 ; v_{\text {max }} / \mathrm{cm}^{-1}$ 3603 and $3482(\mathrm{OH}), 3305(\equiv \mathrm{C}-\mathrm{H}), 2110(\mathrm{C} \equiv \mathrm{C}), 1725(\mathrm{C}=\mathrm{C}-\mathrm{O})$; $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.08$ and 1.22 (each $3 \mathrm{H}, \mathrm{s}, 1$-gem $\left.-\mathrm{CH}_{3}\right), 1.47$ and 1.48 [each $3 \mathrm{H}, \mathrm{s}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{O}$], $1.77\left(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{CH}_{3}\right), 1.81(1 \mathrm{H}$, dd, $J 12$ and $\left.10,2-\mathrm{H}_{\mathrm{ax}}\right), 1.91\left(1 \mathrm{H}, \mathrm{dd}, J 12\right.$ and $\left.6,2-\mathrm{H}_{\mathrm{eq}}\right), 2.50$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{C} \equiv \mathrm{CH}), 4.50(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$ (Found: $\mathrm{M}^{+}, 236.1422$. $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{3}$ requires $M, 236.1411$).

Radical hydrostannylation of terminal alkyne 6

A mixture of alkyne $\mathbf{6}(3.58 \mathrm{~g}, 15.2 \mathrm{mmol})$ and tri- n-butyltin hydride ($6.62 \mathrm{~g}, 22.7 \mathrm{mmol}$) was heated at $120^{\circ} \mathrm{C}$ for 2 h in the presence of a catalytic amount of AIBN ($c a .30 \mathrm{mg}$). The resulting crude product was purified by SCC (ether-hexane, $1: 3$) to give the E-vinylstannane $7 \mathbf{a}(3.17 \mathrm{~g}, 40 \%$) as a colourless oil and the Z-isomer 7b ($3.06 \mathrm{~g}, 38 \%$) as a colourless solid.

Compound 7a. $[a]_{\mathrm{D}}^{25}-167.4$ ($c 0.93, \mathrm{MeOH}$); $v_{\max } / \mathrm{cm}^{-1} 3606$ and $3499(\mathrm{OH}), 1722(\mathrm{C}=\mathrm{C}-\mathrm{O}), 1590(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 0.84$ $0.92\left(18 \mathrm{H}, \mathrm{m}, 1-\mathrm{CH}_{3}, \mathrm{CH}_{2} \times 3\right.$ and $\left.\mathrm{CH}_{2} \mathrm{CH}_{3} \times 3\right), 1.10(3 \mathrm{H}$, $\left.\mathrm{s}, 1-\mathrm{CH}_{3}\right), 1.23-1.33\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 3\right), 1.42-1.56(6 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \times 3\right), 1.47\left(3 \mathrm{H}, \mathrm{d}, J 1.5,5-\mathrm{CH}_{3}\right), 1.48$ and 1.50 [each $3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{O}\right], 1.66\left(1 \mathrm{H}, \mathrm{dd}, J 12\right.$ and $\left.10.5,2-\mathrm{H}_{\mathrm{ax}}\right), 1.80(1 \mathrm{H}, \mathrm{dd}$, $J 12$ and $\left.6,2-\mathrm{H}_{\mathrm{eq}}\right), 4.51(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 5.84\left(1 \mathrm{H}, \mathrm{d}, J 19, J^{1} \mathrm{H}-\right.$ ${ }^{117} \mathrm{Sn} 63, J^{1} \mathrm{H}-{ }^{119} \mathrm{Sn} 66,7-\mathrm{H}$ or $\left.8-\mathrm{H}\right), 5.99\left(1 \mathrm{H}, \mathrm{d}, J 19, J^{1} \mathrm{H}-{ }^{117} \mathrm{Sn}\right.$ $69, J^{1} \mathrm{H}-{ }^{119} \mathrm{Sn} 72,8-\mathrm{H}$ or $7-\mathrm{H}$).

Compound 7b. $[a]_{\mathrm{D}}^{25}+216.5(c 1.00, \mathrm{MeOH}) ; v_{\max } / \mathrm{cm}^{-1} 3616$ and $3500(\mathrm{OH}), 1719(\mathrm{C}=\mathrm{C}-\mathrm{O}), 1594(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 0.84$ $0.91\left(18 \mathrm{H}, \mathrm{m}, 1-\mathrm{CH}_{3}, \mathrm{CH}_{2} \times 3\right.$ and $\left.\mathrm{CH}_{2} \mathrm{CH}_{3} \times 3\right), 1.05(3 \mathrm{H}, \mathrm{s}$, $\left.1-\mathrm{CH}_{3}\right), 1.25-1.37\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 3\right), 1.42-1.55(6 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \times 3$), 1.47 and 1.48 [each $3 \mathrm{H}, \mathrm{s}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{O}$], $1.49(3 \mathrm{H}, \mathrm{d}$, $\left.J 1.5,5-\mathrm{CH}_{3}\right), 1.73\left(1 \mathrm{H}, \mathrm{dd}, J 12\right.$ and $\left.10.5,2-\mathrm{H}_{\mathrm{ax}}\right), 1.88(1 \mathrm{H}, \mathrm{dd}$,
$J 12$ and $\left.6,2-\mathrm{H}_{\mathrm{eq}}\right), 4.50(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 5.93\left(1 \mathrm{H}, \mathrm{d}, J 13, J^{1} \mathrm{H}-\right.$ $\left.{ }^{117} \mathrm{Sn} 68, J^{1} \mathrm{H}-{ }^{199} \mathrm{Sn} 72,8-\mathrm{H}\right), 6.27(1 \mathrm{H}$, dd-like, $J 13$ and 1.5 , $\left.J^{1} \mathrm{H}-{ }^{17} \mathrm{Sn} 139, J^{1} \mathrm{H}-1{ }^{19} \mathrm{Sn} 146,7-\mathrm{H}\right)$.

Palladium-catalyzed hydrostannylation of terminal alkyne 6

To a solution of alkyne $\mathbf{6}(506 \mathrm{mg}, 2.14 \mathrm{mmol})$ in THF $\left(6 \mathrm{~cm}^{3}\right)$ was added $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(30 \mathrm{mg}, 0.04 \mathrm{mmol})$ followed by tri- n butyltin hydride ($750 \mathrm{mg}, 2.58 \mathrm{mmol}$) over a period of ca. 1-2 min . After being stirred at room temperature for 10 min , the reaction mixture was concentrated in vacuo. The residue was purified by SCC (ether-hexane, 1:9) to give the E-vinylstannane 7 a ($780 \mathrm{mg}, 68 \%$).

Isomerization of \boldsymbol{Z}-vinylstannane 7b

A mixture of Z-vinylstannane $\mathbf{7 b}(5.00 \mathrm{~g}, 9.49 \mathrm{mmol})$ and tri- n butyltin hydride ($8.28 \mathrm{~g}, 28.5 \mathrm{mmol}$) was heated at $120^{\circ} \mathrm{C}$ for 1 h in the presence of a catalytic amount of AIBN (ca. 50 mg). The resulting crude product was purified by SCC (etherhexane, $1: 3$) to give the E-vinylstannane $7 \mathrm{a}(3.35 \mathrm{~g}, 67 \%)$ and the Z-isomer 7 bb ($1.10 \mathrm{~g}, 22 \%$ recovery).

(6S)-6-Hydroxy-2,4,4-trimethyl-3-[(E)-2-(tri-n-butylstannyl)-ethenyl]cyclohex-2-enone 8

Aq. $\mathrm{H}_{2} \mathrm{SO}_{4}\left(1.5 \mathrm{M} ; 50 \mathrm{~cm}^{3}\right)$ was added to a solution of the E-vinylstannane 7 a $(5.04 \mathrm{~g}, 9.6 \mathrm{mmol})$ in THF $\left(250 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 30 min and neutralized with saturated aq. NaHCO_{3}. The organics were extracted with ether and washed with brine. Evaporation of the dried solution gave a residue, which was purified by CC (etherhexane, $1: 4)$ to provide the hydroxy ketone $\mathbf{8}(4.10 \mathrm{~g}, 92 \%)$ as a colourless oil; $[a]_{\mathrm{D}}^{25}-102.5$ ($c \quad 1.06, \mathrm{MeOH}$); $\lambda_{\text {max }} / \mathrm{nm} 259$; $v_{\text {max }} / \mathrm{cm}^{-1} 3494(\mathrm{OH}), 1664$ (conj. $\mathrm{C}=\mathrm{O}$), $1590(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(300$ $\mathrm{MHz})$ 0.87-0.99 $\left(15 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 3\right.$ and $\left.\mathrm{CH}_{2} \mathrm{CH}_{3} \times 3\right), 1.15$ and 1.29 (each $3 \mathrm{H}, \mathrm{s}, 1$-gem- CH_{3}), $1.25-1.39\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 3\right.$), $1.48-1.58\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 3\right), 1.80\left(1 \mathrm{H}\right.$, t-like, $\left.J 14,2-\mathrm{H}_{\mathrm{ax}}\right), 1.85$ $\left(3 \mathrm{H}, \mathrm{d}, J 1,5-\mathrm{CH}_{3}\right), 2.15\left(1 \mathrm{H}, \mathrm{dd}, J 12\right.$ and $\left.5.5,2-\mathrm{H}_{\mathrm{eq}}\right), 3.68$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 4.32(1 \mathrm{H}, \mathrm{dd}, J 14$ and $5.5,3-\mathrm{H}), 6.22(1 \mathrm{H}, \mathrm{d}, J 20$, $\left.J^{1} \mathrm{H}-{ }^{117} \mathrm{Sn} 69, J^{1} \mathrm{H}-{ }^{119} \mathrm{Sn} 72,8-\mathrm{H}\right), 6.46(1 \mathrm{H}$, dd-like, $J 20$ and $\left.0.5, J^{1} \mathrm{H}-{ }^{117} \mathrm{Sn} 62, J^{1} \mathrm{H}-{ }^{119} \mathrm{Sn} 65,7-\mathrm{H}\right)$.

(6S)-6-Acetoxy-2,4,4-trimethyl-3-[(E)-2-(tri-n-butylstannyl)-

 ethenyl]cyclohex-2-enone 9$\mathrm{Ac}_{2} \mathrm{O}\left(4.5 \mathrm{~cm}^{3}\right)$ was added to a solution of the hydroxy ketone $\mathbf{8}$ ($3.02 \mathrm{~g}, 6.5 \mathrm{mmol}$) in pyridine (Py) $\left(16 \mathrm{~cm}^{3}\right)$ and the reaction mixture was stirred at room temperature for 2 h , poured into ice-water, and extracted with ether. The extracts were washed successively with aq. $5 \% \mathrm{HCl}$, saturated aq. NaHCO_{3}, and brine. Evaporation of the dried extracts gave a residue, which was purified by CC (ether-hexane, $1: 3$) to afford the acetate 9 ($3.21 \mathrm{~g}, 97 \%$) as a colourless oil; $[a]_{\mathrm{D}}^{25}-87.8$ (c $1.11, \mathrm{MeOH}$); $\lambda_{\text {max }} / \mathrm{nm} 265 ; v_{\text {max }} / \mathrm{cm}^{-1} 1742$ (OAc), 1680 (conj. $\mathrm{C}=\mathrm{O}$), 1596 $(\mathrm{C}=\mathrm{C}) ; \quad \delta_{\mathrm{H}}(300 \mathrm{MHz}) 0.87-1.00\left(15 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 3\right.$ and $\mathrm{CH}_{2} \mathrm{CH}_{3} \times 3$), 1.17 and 1.32 (each $3 \mathrm{H}, \mathrm{s}, 1$-gem $-\mathrm{CH}_{3}$), 1.27-1.39 $\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 3\right), 1.48-1.60\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 3\right), 1.81(3 \mathrm{H}, \mathrm{d}, J 1$, $\left.5-\mathrm{CH}_{3}\right), 2.00\left(1 \mathrm{H}, \mathrm{dd}, J 13\right.$ and $\left.6.5,2-\mathrm{H}_{\mathrm{eq}}\right), 2.10(1 \mathrm{H}, \mathrm{t}, J 13$, $\left.2-\mathrm{H}_{\mathrm{ax}}\right), 2.18(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 5.51(1 \mathrm{H}, \mathrm{dd}, J 13$ and $6.5,3-\mathrm{H}), 6.20$ $\left(1 \mathrm{H}, \mathrm{d}, J 20, J^{1} \mathrm{H}-{ }^{117} \mathrm{Sn} 69, J^{1} \mathrm{H}^{119} \mathrm{Sn} 72,8-\mathrm{H}\right), 6.46(1 \mathrm{H}$, dd-like, $J 20$ and $1, J^{1} \mathrm{H}^{-117} \mathrm{Sn}=J^{1} \mathrm{H}-{ }^{119} \mathrm{Sn} \approx 63,7-\mathrm{H}$).

Coupling reaction of the vinylstannane 9 with the vinyl bromide 10 (Table 1); representative procedure (Run 6)

To a degassed solution of the vinylstannane $9(217 \mathrm{mg}, 0.42$ $\mathrm{mmol})$ and the vinyl bromide $\mathbf{1 0}(128 \mathrm{mg}, 0.85 \mathrm{mmol})$ in DMF $\left(6 \mathrm{~cm}^{3}\right)$ were added $\mathrm{Pd}_{2} \mathrm{dba}_{3}(11 \mathrm{mg}, 0.012 \mathrm{mmol})$ and AsPh_{3} ($31 \mathrm{mg}, 0.10 \mathrm{mmol}$) and the mixture was stirred at $50^{\circ} \mathrm{C}$ for 24 h . After being quenched by addition of aq. $10 \% \mathrm{NH}_{4} \mathrm{OH}$, the mixture was extracted with ether. The extracts were washed
with brine, dried and evaporated to give a residue, which was purified by SCC (acetone-ether-hexane, $3: 10: 20$) to give the alcohol $11(68 \mathrm{mg}, 55 \%)$ and the dimer $12(16 \mathrm{mg}, 17 \%)$.

Compound 11. $[a]_{D}^{27}-156.6$ (c 0.97 , MeOH); $\lambda_{\max } / \mathrm{nm} 231$, $301 ; v_{\text {max }} / \mathrm{cm}^{-1} 3610$ and $3468(\mathrm{OH}), 1740(\mathrm{OAc}), 1679$ (conj. $\mathrm{C}=\mathrm{O}), 1612$ and $1587(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.18$ and 1.32 (each $3 \mathrm{H}, \mathrm{s}, 1$-gem $-\mathrm{CH}_{3}$), 1.84 and 1.86 (each $3 \mathrm{H}, \mathrm{s}, 5-\mathrm{CH}_{3}$ and $\left.9-\mathrm{CH}_{3}\right), 1.99\left(1 \mathrm{H}, \mathrm{dd}, J 12.5\right.$ and $\left.6.5,2-\mathrm{H}_{\mathrm{eq}}\right), 2.06(1 \mathrm{H}, \mathrm{t}, J 12.5$, $\left.2-\mathrm{H}_{\mathrm{ax}}\right), 2.17(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 4.33\left(2 \mathrm{H}, \mathrm{d}, J 6.5,11-\mathrm{H}_{2}\right), 5.51(1 \mathrm{H}$, dd, $J 12.5$ and $6.5,3-\mathrm{H}), 5.76(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J 6.5,10-\mathrm{H}), 6.15(1 \mathrm{H}$, br d, $J 16,7-\mathrm{H}$), $6.26(1 \mathrm{H}, \mathrm{d}, J 16,8-\mathrm{H})$ (Found: M ${ }^{+}, 292.1653$. $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{4}$ requires $M, 292.1673$).

Compound 12. $\lambda_{\text {max }} / \mathrm{nm} 225,328 ; v_{\max } / \mathrm{cm}^{-1} 1739$ (OAc), 1681 (conj. C=O), $1588(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.22$ and 1.35 (each 6 H , s , 1-gem- CH_{3} and 1^{\prime}-gem- $\left.-\mathrm{CH}_{3}\right), 1.90\left(6 \mathrm{H}, \mathrm{s}, 5-\mathrm{CH}_{3}\right.$ and $\left.5^{\prime}-\mathrm{CH}_{3}\right)$, $2.01\left(2 \mathrm{H}, \mathrm{dd}, J 13\right.$ and $6.5,2^{\prime}-\mathrm{H}_{\mathrm{ax}}$ and $\left.2-\mathrm{H}_{\mathrm{ax}}\right), 2.07(2 \mathrm{H}, \mathrm{t}, J 13$, $2^{\prime}-\mathrm{H}_{\mathrm{eq}}$ and $\left.2-\mathrm{H}_{\mathrm{eq}}\right), 2.18(6 \mathrm{H}, \mathrm{s}, \mathrm{OAc} \times 2), 5.51(2 \mathrm{H}, \mathrm{dd}, J 13$ and $6.5,3-\mathrm{H}$ and $\left.3^{\prime}-\mathrm{H}\right), 6.28-6.43\left(4 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}, 7^{\prime}-\mathrm{H}, 8-\mathrm{H}\right.$ and $\left.8^{\prime}-\mathrm{H}\right)$ (Found: $\mathrm{M}^{+}, 442.2354 . \mathrm{C}_{26} \mathrm{H}_{34} \mathrm{O}_{6}$ requires $M, 442.2353$).

(2E,4E)-5-[(4S)-4-Acetoxy-2,6,6-trimethyl-3-oxocyclohex-1-enyl]-3-methylpenta-2,4-dienal 13

The alcohol $11(532 \mathrm{mg}, 1.82 \mathrm{mmol})$ was dissolved in etherhexane ($1: 2$) and shaken with active $\mathrm{MnO}_{2}(2.7 \mathrm{~g})$ at room temperature for 1 h . The mixture was filtered through Celite. Evaporation of the filtrate gave a residue, which was purified by SCC (acetone-hexane, $1: 3$) to afford the aldehyde $13(383 \mathrm{mg}$, 72%) as a pale yellow oil; $[a]_{\mathrm{D}}^{23}-134.2$ (c 1.03, EtOH); $\lambda_{\text {max }} / \mathrm{nm}$ 250, 300; $v_{\max } / \mathrm{cm}^{-1} 1740$ (OAc), 1665 (conj. $\mathrm{C}=\mathrm{O}$ and conj. $\mathrm{CHO}), 1616$ and $1596(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.21$ and 1.37 (each $\left.3 \mathrm{H}, \mathrm{s}, 1-\mathrm{gem}-\mathrm{CH}_{3}\right), 1.85\left(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{CH}_{3}\right), 2.04(1 \mathrm{H}, \mathrm{dd}, J 13$ and $\left.6.5,2-\mathrm{H}_{\mathrm{eq}}\right), 2.11\left(1 \mathrm{H}, \mathrm{t}, J 13,2-\mathrm{H}_{\mathrm{ax}}\right), 2.19(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.35(3 \mathrm{H}$, $\left.\mathrm{s}, 9-\mathrm{CH}_{3}\right), 5.53(1 \mathrm{H}, \mathrm{dd}, J 13$ and $6.5,3-\mathrm{H}), 6.02(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 8$, $10-\mathrm{H}), 6.35(1 \mathrm{H}, \mathrm{d}, J 16,8-\mathrm{H}), 6.70(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 16,7-\mathrm{H}), 10.16$ ($1 \mathrm{H}, \mathrm{d}, J 8, \mathrm{CHO}$) (Found: $\mathrm{M}^{+}, 290.1543 . \mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{4}$ requires M, 290.1516).

(2E,4E)-5-[(4S)-4-Hydroxy-2,6,6-trimethyl-3-oxocyclohex-1-enyl]-3-methylpenta-2,4-dienal 3

NaOMe (1.0 M in $\mathrm{MeOH} ; 0.5 \mathrm{~cm}^{3}, 0.5 \mathrm{mmol}$) was added to a solution of the acetate $\mathbf{1 3}(204 \mathrm{mg}, 0.70 \mathrm{mmol})$ in MeOH (10 cm^{3}) and the mixture was stirred at room temperature for 15 min . To this reaction mixture was added Dowex $50 \mathrm{~W}-\mathrm{X} 8\left(\mathrm{H}^{+}\right)$ $(500 \mathrm{mg})$ and the mixture was stirred at room temperature for 10 min . After the Dowex had been filtered off, the filtrate was evaporated. The residue was purified by SCC (acetone-hexane, $3: 7$) to give the alcohol $3(141 \mathrm{mg}, 81 \%)$ as a pale yellow oil; $[a]_{\mathrm{D}}^{26}-94.1(c 1.01, \mathrm{EtOH}) ; \lambda_{\max } / \mathrm{nm} 251,301 ; v_{\max } / \mathrm{cm}^{-1} 3495$ $(\mathrm{OH}), 1666$ (conj. $\mathrm{C}=\mathrm{O}$ and conj. CHO), 1616 and 1596 ($\mathrm{C}=\mathrm{C}$); $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.15$ and $1.30\left(\right.$ each $3 \mathrm{H}, \mathrm{s}, 1$-gem $\left.-\mathrm{CH}_{3}\right), 1.81(1 \mathrm{H}$, $\mathrm{t}, J 13,2-\mathrm{H}_{\mathrm{ax}}, 1.85\left(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{CH}_{3}\right), 2.15(1 \mathrm{H}, \mathrm{dd}, J 13$ and 6 , $\left.2-\mathrm{H}_{\mathrm{eq}}\right), 2.31\left(3 \mathrm{H}, \mathrm{s}, 9-\mathrm{CH}_{3}\right), 3.61(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 4.32(1 \mathrm{H}, \mathrm{ddd}$, $J 13,6$ and $2,3-\mathrm{H}), 5.98(1 \mathrm{H}$, br d, $J 8,10-\mathrm{H}), 6.32(1 \mathrm{H}, \mathrm{d}$, $J 16.5,8-\mathrm{H}), 6.67(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 16.5,7-\mathrm{H}), 10.13(1 \mathrm{H}, \mathrm{d}, J 8$, CHO) (Found: $\mathrm{M}^{+}, 248.1433 . \mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3}$ requires $M, 248.1412$).

(6S)-6-Hydroxy-3-[($1 E, 3 E$)-5-hydroxy-3-methylpenta-1,3-dienyl]-2,4,4-trimethylcyclohex-2-enone 14

According to the procedure described in the preparation of the alcohol $\mathbf{3}$, methanolysis of the acetate $11(334 \mathrm{mg})$ followed by purification using SCC (ether-hexane, $4: 1$) gave the diol $\mathbf{1 4}$ ($164 \mathrm{mg}, 57 \%$) as a pale yellow oil; $[a]_{\mathrm{D}}^{25}-157.6$ (c 1.03, EtOH); $\lambda_{\max } / \mathrm{nm} 229,298 ; v_{\max } / \mathrm{cm}^{-1} 3611$ and 3489 (OH), 1664 (conj. $\mathrm{C}=\mathrm{O}), 1610$ and $1595(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.17$ and 1.30 (each $3 \mathrm{H}, \mathrm{s}, 1-$ gem $\left.-\mathrm{CH}_{3}\right), 1.81\left(1 \mathrm{H}, \mathrm{t}, J 13,2-\mathrm{H}_{\mathrm{ax}}\right), 1.87$ and 1.89 (each $3 \mathrm{H}, \mathrm{s}, 5-\mathrm{CH}_{3}$ and $\left.9-\mathrm{CH}_{3}\right), 2.15\left(1 \mathrm{H}, \mathrm{dd}, J 13\right.$ and $\left.5.5,2-\mathrm{H}_{\mathrm{eq}}\right)$,
$3.70(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 4.32(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 4.35(2 \mathrm{H}, \mathrm{d}, J 6.5,11-$ H_{2}), $5.78(1 \mathrm{H}$, br t, $J 6.5,10-\mathrm{H}), 6.17(1 \mathrm{H}$, br d, $J 16.5,7-\mathrm{H})$, $6.27(1 \mathrm{H}, \mathrm{d}, J 16.5,8-\mathrm{H})$ (Found: $\mathrm{M}^{+}, 250.1592 . \mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3}$ requires $M, 250.1578$).

Tri-n-butyl $\{(2 E, 4 E)-5-[(4 S)$-4-hydroxy-2,6,6-trimethyl-3-oxocyclohex-1-enyl]-3-methylpenta-2,4-dienyl\}phosphonium bromide 4b

According to the literature procedure, ${ }^{11}$ aq. $48 \% \mathrm{HBr}\left(10.6 \mathrm{~cm}^{3}\right.$, 5.1 mmol) was added dropwise to an ice-cooled solution of the alcohol $\mathbf{1 4}(1.00 \mathrm{~g}, 4.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ and the mixture was stirred for further 5 min . After addition of a small amount of 1,2-epoxybutane, the mixture was poured into saturated aq. NaHCO_{3} and extracted with ether. The extracts were washed with brine, dried, and evaporated to give the bromide which, without purification, was dissolved in ether $\left(15 \mathrm{~cm}^{3}\right)$ and $\mathrm{PBu}_{3}\left(1.2 \mathrm{~cm}^{3}, 0.48 \mathrm{mmol}\right)$ was added to it. After being stirred at room temperature for 1 h , the resulting precipitate was filtered off, and washed with ether to provide the phosphonium salt $\mathbf{4 b}(1.59 \mathrm{~g}, 77 \%$ from $\mathbf{1 4}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 0.92(9 \mathrm{H}, \mathrm{t}, J 7$, $\left.\mathrm{CH}_{3} \times 3\right) 1.12$ and $1.26\left(\right.$ each $3 \mathrm{H}, \mathrm{s}, 1$-gem $\left.-\mathrm{CH}_{3}\right), 1.49[12 \mathrm{H}, \mathrm{m}$, $\left.\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right) \times 3\right], 1.76\left(1 \mathrm{H}, \mathrm{t}, J 13,2-\mathrm{H}_{\mathrm{ax}}\right), 1.83\left(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{CH}_{3}\right)$, $1.99\left(3 \mathrm{H}, \mathrm{br} \mathrm{d}, J 3.5,9-\mathrm{CH}_{3}\right), 2.12\left(1 \mathrm{H}, \mathrm{dd}, J 13\right.$ and $\left.6,2-\mathrm{H}_{\mathrm{eq}}\right)$, $2.43\left(6 \mathrm{H}, \mathrm{m}, \mathrm{PCH}_{2} \times 3\right), 3.74\left(2 \mathrm{H}, \mathrm{dd}, J 16.5\right.$ and $\left.7.5,11-\mathrm{H}_{2}\right)$, $4.28(1 \mathrm{H}$, dd, $J 13$ and $6,3-\mathrm{H}), 5.47(1 \mathrm{H}$, br q, $J 7.5,10-\mathrm{H}), 6.18$ $(1 \mathrm{H}, \mathrm{br}$ d, $J 16.5,7-\mathrm{H}), 6.25(1 \mathrm{H}, \mathrm{d}, J 16.5,8-\mathrm{H})$.

(6S)-3-Ethynyl-6-hydroxy-2,4,4-trimethylcyclohex-2-enone 15

In the same manner as described for the preparation of the ketone 8, acid hydrolysis of compound $\mathbf{6}(988 \mathrm{mg})$ followed by purification by SCC (acetone-hexane, 1:6) provided the ketone $15(624 \mathrm{mg}, 84 \%)$ as a colourless oil; $[a]_{\mathrm{D}}^{23}-195.1$ (c 1.02, $\mathrm{EtOH}) ; \lambda_{\text {max }} / \mathrm{nm} 266 ; v_{\text {max }} / \mathrm{cm}^{-1} 3505(\mathrm{OH}), 3301(\equiv \mathrm{C}-\mathrm{H}), 2092$ (C引C), 1672 (conj. $\mathrm{C}=\mathrm{O}$), $1586(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.29$ and $1.34\left(\right.$ each $3 \mathrm{H}, \mathrm{s}, 1-$ gem $\left.-\mathrm{CH}_{3}\right), 1.78\left(1 \mathrm{H}, \mathrm{t}, J 13,2-\mathrm{H}_{\mathrm{ax}}\right), 2.01$ $\left(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{CH}_{3}\right), 2.21\left(1 \mathrm{H}, \mathrm{dd}, J 13\right.$ and $\left.5.5,2-\mathrm{H}_{\mathrm{eq}}\right), 3.55(1 \mathrm{H}, \mathrm{d}$, $J 2, \mathrm{OH}), 3.79(1 \mathrm{H}, \mathrm{s}, \mathrm{C} \equiv \mathrm{CH}), 4.33(1 \mathrm{H}$, ddd, $J 13,5.5$ and 2 , 3-H) (Found: $\mathrm{M}^{+}, 178.1002 . \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2}$ requires $M, 178.0993$).

(6S)-6-Acetoxy-3-ethynyl-2,4,4-trimethylcyclohex-2-enone 16

According to the procedure described in the preparation of the acetate 9 , acetylation of the alcohol $15(2.40 \mathrm{~g})$ followed by purification by CC (acetone-hexane, $1: 5$) afforded the acetate $\mathbf{1 6}(2.74 \mathrm{~g}, 93 \%)$ as a colourless oil; $\left.[a]_{\mathrm{D}}^{23}-166.0(c) 1.03, \mathrm{EtOH}\right)$; $\lambda_{\text {max }} / \mathrm{nm} 267 ; v_{\text {max }} / \mathrm{cm}^{-1} 3544(\mathrm{OH}), 3301(\equiv \mathrm{C}-\mathrm{H}), 2092(\mathrm{C} \equiv \mathrm{C})$, 1743 (OAc), 1690 (conj. $\mathrm{C}=\mathrm{O}$), 1587 (C=C); $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.30$ and 1.36 (each $\left.3 \mathrm{H}, \mathrm{s}, 1-\mathrm{gem}-\mathrm{CH}_{3}\right)$, $1.97\left(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{CH}_{3}\right), 2.03$ $\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}\right), 2.16(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 3.79(1 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CH}), 5.49(1 \mathrm{H}$, dd, $J 12.5$ and 7, 3-H) (Found: M ${ }^{+}$, 220.1085. $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3}$ requires $M, 220.1099$).

Coupling reaction of terminal alkyne 15 with the vinyl bromide 10 (Table 2); representative procedure (Run 4)
To a stirred, degassed mixture of the vinyl bromide $\mathbf{1 0}(986 \mathrm{mg}$, $6.75 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(226 \mathrm{mg}, 0.20 \mathrm{mmol}), \mathrm{Et}_{2} \mathrm{NH}\left(1.05 \mathrm{~cm}^{3}\right.$, $10.1 \mathrm{mmol}), \mathrm{CuI}(200 \mathrm{mg}, 1.05 \mathrm{mmol})$ and BHT ($48 \mathrm{mg}, 0.22$ $\mathrm{mmol})$ in dry benzene $\left(20 \mathrm{~cm}^{3}\right)$ was added dropwise a degassed solution of alkyne $\mathbf{1 5}(775 \mathrm{mg}, 4.35 \mathrm{mmol})$ in dry benzene (10 cm^{3}) over a period of 2 h by use of a syringe pump. After being stirred at room temperature for a further 30 min , the mixture was diluted with ether and the organic layer was washed successively with aq. $3 \% \mathrm{HCl}$, saturated aq. NaHCO_{3}, and brine. Evaporation of the dried solvent gave a residue, which was purified by SCC (acetone-hexane, 1:3) to give the alcohol 17 ($828 \mathrm{mg}, 76 \%$) and the dimer 18 ($184 \mathrm{mg}, 24 \%$).

Compound 17. $\mathrm{Mp} 86-88^{\circ} \mathrm{C}$ (from hexane-diisopropyl ether) (lit. ${ }^{11}, 90-92{ }^{\circ} \mathrm{C}$); $[a]_{D}^{23}-199.23$ (c 0.99, EtOH) $\left\{\right.$ lit. ${ }^{11}{ }^{10}[a]_{D}^{20}$
-202.6 (c 1.0, EtOH) \}; $\lambda_{\text {max }} / \mathrm{nm} 306 ; v_{\max } / \mathrm{cm}^{-1} 3610$ and 3494 $(\mathrm{OH}), 2183(\mathrm{C} \equiv \mathrm{C}), 1665$ (conj. $\mathrm{C}=\mathrm{O}), 1576(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz})$ 1.29 and 1.34 (each 3 H , s, 1-gem- CH_{3}), $1.79\left(1 \mathrm{H}, \mathrm{t}, J 13,2-\mathrm{H}_{\mathrm{ax}}\right)$, $1.92\left(3 \mathrm{H}, \mathrm{s}, 9-\mathrm{CH}_{3}\right), 2.00\left(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{CH}_{3}\right), 2.21(1 \mathrm{H}, \mathrm{dd}, J 13$ and $\left.5.5,2-\mathrm{H}_{\mathrm{eq}}\right), 3.59(1 \mathrm{H}, \mathrm{d}, J 1.5, \mathrm{OH}), 4.33(3 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ and $11-$ $\left.\mathrm{H}_{2}\right), 6.14(1 \mathrm{H}, \mathrm{tq}, J 7$ and $1.5,10-\mathrm{H})$ (Found: $\mathrm{M}^{+}, 248.1430$. $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3}$ requires $M, 248.1411$).

Compound 18. $\mathrm{Mp} 180-183{ }^{\circ} \mathrm{C}$ (from hexane-ether); $[\alpha]_{\mathrm{D}}^{23}$ -326.7 (c 0.99, EtOH); $\lambda_{\text {max }} / \mathrm{nm} 228,265$ (sh), 279, 290, 314, 334, 358; $v_{\max } / \mathrm{cm}^{-1} 3499(\mathrm{OH}), 2127(\mathrm{C} \equiv \mathrm{C}), 1664$ (conj. $\mathrm{C}=\mathrm{O}$), 1629 and $1575(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.29$ and 1.34 (each 6 H , s, 1-gem $-\mathrm{CH}_{3}$ and 1^{\prime}-gem- $\left.\mathrm{CH}_{3}\right), 1.82\left(2 \mathrm{H}, \mathrm{t}, J 13,2^{\prime}-\mathrm{H}_{\mathrm{ax}}\right.$ and $\left.2-\mathrm{H}_{\mathrm{ax}}\right), 2.06\left(6 \mathrm{H}, \mathrm{s}, 5^{\prime}-\mathrm{CH}_{3}\right.$ and $\left.5-\mathrm{CH}_{3}\right), 2.23(2 \mathrm{H}, \mathrm{dd}, J 13$ and $6,2^{\prime}-\mathrm{H}_{\mathrm{eq}}$ and $\left.2-\mathrm{H}_{\mathrm{eq}}\right), 3.54(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH} \times 2), 4.36(2 \mathrm{H}, \mathrm{dd}, J 13$ and 6, 3-H and $3^{\prime}-\mathrm{H}$) (Found: C, 74.27; H, 7.45; $\mathrm{M}^{+}, 354.1828$. $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{4}$ requires $\left.\mathrm{C}, 74.55 ; \mathrm{H}, 7.39 \% ; M, 354.1829\right)$.

(6S)-6-Acetoxy-3-[(3E)-5-hydroxy-3-methylpent-3-en-1-ynyl]-2,4,4-trimethylcyclohex-2-enone 19

The coupling reaction of the alkyne 16 ($778 \mathrm{mg}, 3.53 \mathrm{mmol}$) with the vinyl bromide $\mathbf{1 0}(871 \mathrm{mg}, 5.77 \mathrm{mmol})$ was carried out in the same manner as above. The resulting crude product was purified by SCC (acetone-hexane, $1: 3$) to give the alcohol 19 $(978 \mathrm{mg}, 95 \%)$ as a pale yellow oil; $[a]_{\mathrm{D}}^{23}-183.3$ (c 1.02, EtOH); $\lambda_{\text {max }} / \mathrm{nm} 310 ; v_{\text {max }} / \mathrm{cm}^{-1} 3609$ and $3480(\mathrm{OH}), 2182(\mathrm{C} \equiv \mathrm{C}), 1740$ (OAc), 1681 (conj. $\mathrm{C}=\mathrm{O}$), $1578(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.30$ and 1.37 (each 3 H, s, 1-gem $\left.-\mathrm{CH}_{3}\right), 1.92\left(3 \mathrm{H}, \mathrm{s}, 9-\mathrm{CH}_{3}\right), 1.97(3 \mathrm{H}, \mathrm{s}$, $\left.5-\mathrm{CH}_{3}\right), 2.05\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}\right), 2.18(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 4.31(2 \mathrm{H}$, br t, $\left.J 6,11-\mathrm{H}_{2}\right), 5.51(1 \mathrm{H}, \mathrm{dd}, J 12$ and $7.5,3-\mathrm{H}), 6.14(1 \mathrm{H}, \mathrm{tq}, J 6$ and $1.5,10-\mathrm{H}$) (Found: $\mathrm{M}^{+}, 290.1538 . \mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{4}$ requires M, 290.1516).

(7aS)-5-[(3E)-5-Hydroxy-3-methylpent-3-en-1-ynyl]-5,6,7,7a-tetrahydro-2,2,4,6,6-pentamethylbenzo-1,3-dioxol-5-ol 20

According to the procedure described in the preparation of the alcohol 17, the coupling reaction of the alkyne $6(3.57 \mathrm{~g}, 15.1$ $\mathrm{mmol})$ with the vinyl bromide $10(3.57 \mathrm{~g}, 23.6 \mathrm{mmol})$ followed by purification using SCC (acetone-hexane, $1: 3$) provided the alcohol $20(5.21 \mathrm{~g}, 86 \%)$ as a pale yellow oil; $[\alpha]_{\mathrm{D}}^{23}+229.2$ (c 0.96, EtOH); $v_{\text {max }} / \mathrm{cm}^{-1} 3610$ and $3480(\mathrm{OH}), 2184(\mathrm{C} \equiv \mathrm{C})$, $1724(\mathrm{C}=\mathrm{C}-\mathrm{O}), 1663$ and $1633(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.09$ and 1.21 (each $3 \mathrm{H}, \mathrm{s}, 1$-gem- CH_{3}), 1.48 and 1.50 [each 3 H , s, $\left.\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{O}\right], 1.77\left(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{CH}_{3}\right), 1.81\left(3 \mathrm{H}, \mathrm{s}, 9-\mathrm{CH}_{3}\right), 1.92(2 \mathrm{H}$, $\left.\mathrm{m}, 2-\mathrm{H}_{2}\right), 4.22\left(2 \mathrm{H}\right.$, br t, $\left.J 6,11-\mathrm{H}_{2}\right), 4.52(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 5.96$ $\left(1 \mathrm{H}, \mathrm{tq}, J 6\right.$ and 1.5, 10-H) (Found: $\mathrm{M}^{+}, 306.1823 . \mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{4}$ requires $M, 306.1830)$.

Preparation of C_{15}-aldehyde $\mathbf{3}$ from $\boldsymbol{\alpha}$-acetylenic alcohol $\mathbf{2 0}$

A solution of α-acetylenic alcohol $20(1.63 \mathrm{~g}, 5.33 \mathrm{mmol})$ in THF ($20 \mathrm{~cm}^{3}$) was added dropwise to a stirred suspension of $\mathrm{LiAlH}_{4}(504 \mathrm{mg}, 13.3 \mathrm{mmol})$ and $\mathrm{NaOMe}(57 \mathrm{mg}, 1.06 \mathrm{mmol})$ in THF $\left(50 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 10 min and at room temperature for 1 h . The excess of LiAlH_{4} was decomposed by dropwise additon of water. After evaporation of THF, the residue was extracted with ether. The extracts were washed with brine, dried, and evaporated to afford a crude alcohol 21, which without purification was dissolved in ether-hexane $(1: 3)$ and shaken with active $\mathrm{MnO}_{2}(9 \mathrm{~g})$ at room temperature for 3 h . The mixture was filtered through Celite. Evaporation of the filtrate gave a residue, which without purification was treated with acid according to the preparation of the ketone 8 . The resulting crude product was purified by SCC (acetone-hexane, $1: 2$) to afford the aldehyde $3(1.09 \mathrm{~g}$, 83% from 20). Spectral properties of this aldehyde 3 were in agreement with those obtained by alcoholysis of the acetate 13.

Preparation of C_{15}-alcohol 14 from α-acetylenic alcohol 20

Reduction of the α-acetylenic alcohol $20(1.00 \mathrm{~g})$ was carried out in the same manner as above to afford the crude alcohol 21, which without purification, was treated with acid according to the procedure described in the preparation of the ketone 8 . The resulting crude product was purified by SCC (acetone-hexane, $3: 7$) to afford the diol 14 ($560 \mathrm{mg}, 65 \%$ from 20). Spectral properties of this diol 14 were in agreement with those obtained by alcoholysis of the acetate $\mathbf{1 1}$.

(6S)-3-[(1E,3E,5E)-3,8-Dimethylnona-1,3,5,7-tetraenyl]-6-hydroxy-2,4,4-trimethylcyclohex-2-enone 23a

A solution of $\mathrm{NaOMe}\left(1.0 \mathrm{M}\right.$ in $\left.\mathrm{MeOH} ; 2.98 \mathrm{~cm}^{3}, 2.98 \mathrm{mmol}\right)$ was added to an ice-cooled solution of the Wittig salt $\mathbf{4 b}$ (1.44 $\mathrm{g}, 2.98 \mathrm{mmol})$ and the aldehyde $22(100 \mathrm{mg}, 1.19 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$. After being stirred at room temperature for 40 min , the reaction mixture was diluted with ether. The organic layer was washed with brine, dried, and evaporated to give a residue, which was purified by SCC (ether-hexane, 1:2) to afford the all- E pentaenone 23a ($260 \mathrm{mg}, 73 \%$) as a yellow oil; $\lambda_{\text {max }} / \mathrm{nm} 280,362 ; v_{\max } / \mathrm{cm}^{-1} 3490(\mathrm{OH}), 1659($ conj. $\mathrm{C}=\mathrm{O})$, 1610 and $1566(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.20,1.31$ (each 3 H , s, 1 -gem- CH_{3}), $1.80\left(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{ax}}\right), 1.81$ and 1.84 (each 3 H , s, 14 -gem- CH_{3}), 1.93 and 1.94 (each $3 \mathrm{H}, \mathrm{s}, 5-\mathrm{CH}_{3}$ and $9-\mathrm{CH}_{3}$), $2.15\left(1 \mathrm{H}, \mathrm{dd}, J 12.5\right.$ and $\left.5.5,2-\mathrm{H}_{\mathrm{eq}}\right), 3.71(1 \mathrm{H}, \mathrm{d}, J 2, \mathrm{OH}), 4.32$ $(1 \mathrm{H}$, ddd, $J 13.5,5.5$ and $2,3-\mathrm{H}), 5.98(1 \mathrm{H}, \mathrm{dm}, J 10.5,13-\mathrm{H})$, $6.16(1 \mathrm{H}$, br d, $J 16,7-\mathrm{H}), 6.26(1 \mathrm{H}$, br d, $J 11,10-\mathrm{H}), 6.40(1 \mathrm{H}$, $\mathrm{d}, J 16,8-\mathrm{H}), 6.46(1 \mathrm{H}, \mathrm{dd}, J 14.5$ and $11,11-\mathrm{H}), 6.56(1 \mathrm{H}, \mathrm{dd}$, $J 14.5$ and $10.5,12-\mathrm{H}$) (Found: $\mathrm{M}^{+}, 300.2090 . \mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{2}$ requires $M, 300.2088)$.

(6S)-6-Acetoxy-3-[(1E,3E,5EIZ)-3,8-dimethylnona-1,3,5,7-tetraenyl]-2,4,4-trimethylcyclohex-2-enone 24a,b

In the same manner as described above, Wittig reaction of the phosphonium salt $\mathbf{4} \mathbf{a}^{11}(2.05 \mathrm{~g}, 3.56 \mathrm{mmol})$ with the aldehyde 22 ($100 \mathrm{mg}, 1.19 \mathrm{mmol}$) followed by purification by SCC (etherhexane, $1: 2$) provided an isomeric mixture of compound 23 ($304 \mathrm{mg}, 85 \%$), which without separation was acetylated in the same manner as described for the preparation of the acetate 9 . The resulting crude products were purified by SCC (acetonehexane, $1: 3$) to provide the all- E-pentaenone $\mathbf{2 4 a}(90 \mathrm{mg}, 22 \%$) and the $11 Z$-isomer $\mathbf{2 4 b}(90 \mathrm{mg}, 22 \%)$ each as a yellow oil.

Compound 24a. $\lambda_{\text {max }} / \mathrm{nm} 282,363 ; v_{\max } / \mathrm{cm}^{-1} 1740$ (OAc), 1675 (conj. $\mathrm{C}=\mathrm{O}), 1568(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.22$ and 1.34 (each 3 H , s, 1-gem- CH_{3}), 1.81 and 1.84 (each $3 \mathrm{H}, \mathrm{s}, 14$-gem $-\mathrm{CH}_{3}$), 1.89 $\left(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{CH}_{3}\right), 1.94\left(3 \mathrm{H}, \mathrm{s}, 9-\mathrm{CH}_{3}\right), 2.00(1 \mathrm{H}, \mathrm{dd}, J 12.5$ and 6.5 , $\left.2-\mathrm{H}_{\mathrm{eq}}\right), 2.07\left(1 \mathrm{H}, \mathrm{t}, J 12.5,2-\mathrm{H}_{\mathrm{ax}}\right), 2.19(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 5.52(1 \mathrm{H}$, dd, $J 12.5$ and $6.5,3-\mathrm{H}), 5.98(1 \mathrm{H}, \mathrm{dm}, J 10.5,13-\mathrm{H}), 6.15(1 \mathrm{H}$, br d, $J 16,7-\mathrm{H}), 6.25(1 \mathrm{H}$, br d, $J 11,10-\mathrm{H}), 6.37(1 \mathrm{H}, \mathrm{d}, J 16$, $8-\mathrm{H}), 6.45(1 \mathrm{H}$, dd, $J 14.5$ and $11,11-\mathrm{H}), 6.56(1 \mathrm{H}, \mathrm{dd}, J 14.5$ and $10.5,12-\mathrm{H}$) (Found: $\mathrm{M}^{+}, 342.2185 . \mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{3}$ requires M, 342.2194).

Compound 24b. $\lambda_{\text {max }} / \mathrm{nm} 281,361 ; v_{\max } / \mathrm{cm}^{-1} 1740$ (OAc), 1675 (conj. $\mathrm{C}=\mathrm{O}), 1607$ and $1571(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.22$ and 1.35 (each $3 \mathrm{H}, \mathrm{s}, 1$-gem- CH_{3}), 1.81 and 1.88 (each 3 H , s, 14-gem$\left.\mathrm{CH}_{3}\right), 1.90\left(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{CH}_{3}\right), 1.95\left(3 \mathrm{H}, \mathrm{s}, 9-\mathrm{CH}_{3}\right), 2.01(1 \mathrm{H}, \mathrm{dd}$, $J 12.5$ and $\left.6.5,2-\mathrm{H}_{\mathrm{eq}}\right), 2.07\left(1 \mathrm{H}, \mathrm{t}, J 12.5,2-\mathrm{H}_{\mathrm{ax}}\right), 2.19(3 \mathrm{H}, \mathrm{s}$, $\mathrm{OAc}), 5.53(1 \mathrm{H}, \mathrm{dd}, J 12.5$ and $6.5,3-\mathrm{H}), 6.19(1 \mathrm{H}$, br d, $J 16$, $7-\mathrm{H}), 6.19-6.37(3 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}, 12-\mathrm{H}$ and $13-\mathrm{H}), 6.43(1 \mathrm{H}, \mathrm{d}$, $J 16,8-\mathrm{H}), 6.64(1 \mathrm{H}$, br d, $J 11.5,10-\mathrm{H})$ (Found: $\mathrm{M}^{+}, 342.2187$. $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{3}$ requires $M, 342.2194$).

(2E,4E,6E,8E,10E)-2,11-Dimethyldodeca-2,4,6,8,10-pentaenedial 27

A solution of $\mathrm{NaOMe}\left(1.0 \mathrm{M}\right.$ in $\left.\mathrm{MeOH} ; 2.5 \mathrm{~cm}^{3}, 2.5 \mathrm{mmol}\right)$ was added to an ice-cooled solution of the diphosphonium salt
$25^{15 a}(488 \mathrm{mg}, 1.04 \mathrm{mmol})$ and the aldehyde $\mathbf{2 8}^{16}(300 \mathrm{mg}, 2.08$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$. After being stirred at room temperature for 1 h , the reaction mixture was diluted with ether. The organic layer was sufficiently shaken with aq. $5 \% \mathrm{HCl}$ and then washed successively with saturated aq. NaHCO_{3} and brine Evaporation of the dried solution provided a residue, which was purifed by CC (ether-hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 4: 4$) to afford the dial $27(121 \mathrm{mg}, 54 \%)$ as a red solid; $\lambda_{\text {max }} / \mathrm{nm} 365(\mathrm{sh}), 385$, 404; $v_{\max } / \mathrm{cm}^{-1} 1663$ (conj. CHO), $1610(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz})$ $1.90\left(6 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}_{3}\right.$ and $\left.11-\mathrm{CH}_{3}\right), 6.60(2 \mathrm{H}, \mathrm{m})$ and $6.68-6.84$ $(4 \mathrm{H}, \mathrm{m})(4-\mathrm{H}, 5-\mathrm{H}, 6-\mathrm{H}, 7-\mathrm{H}, 8-\mathrm{H}$ and $9-\mathrm{H}), 6.91(2 \mathrm{H}$, br d, $J 10,3-\mathrm{H}$ and $10-\mathrm{H})$, $9.48(2 \mathrm{H}, \mathrm{s}, \mathrm{CHO} \times 2)$ (Found: M^{+}, 216.1161. $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{2}$ requires $M, 216.1150$).

3,3'-[(1E,3E,5E,7E,9E)-3,8-Dimethyldeca-1,3,5,7,9-pentaene-1,10-diyl]bis[(6S)-6-hydroxy-2,4,4-trimethylcyclohex-2-enone] 2a

According to the procedure described in the preparation of the pentaenone 23a, Wittig reaction of phosphonium salt 4b (488 $\mathrm{mg}, 1.01 \mathrm{mmol})$ with the aldehyde $3(100 \mathrm{mg}, 0.40 \mathrm{mmol})$ and purification of the crude product by CC (EtOAc-benzene, $1: 4$) gave the analogue $\mathbf{2 a}(131 \mathrm{mg}, 70 \%)$ as a yellow oil; $\lambda_{\text {max }} / \mathrm{nm} 404$; $v_{\max } / \mathrm{cm}^{-1} 3494(\mathrm{OH}), 1661$ (conj. $\mathrm{C}=\mathrm{O}$), 1601 and $1573(\mathrm{C}=\mathrm{C})$; $\delta_{\mathrm{H}}(500 \mathrm{MHz}) 1.21$ and 1.32 (each $6 \mathrm{H}, \mathrm{s}, 1-\mathrm{gem}-\mathrm{CH}_{3}$ and 1^{\prime}-gem$\left.\mathrm{CH}_{3}\right), 1.82\left(2 \mathrm{H}, \mathrm{t}, J 13,2-\mathrm{H}_{\mathrm{ax}}\right.$ and $\left.2^{\prime}-\mathrm{H}_{\mathrm{ax}}\right), 1.94\left(6 \mathrm{H}, \mathrm{s}, 5-\mathrm{CH}_{3}\right.$ and $\left.5^{\prime}-\mathrm{CH}_{3}\right), 1.99\left(6 \mathrm{H}, \mathrm{s}, 9-\mathrm{CH}_{3}\right.$ and $\left.9^{\prime}-\mathrm{CH}_{3}\right), 2.16(2 \mathrm{H}, \mathrm{dd}, J 13$ and $6,2-\mathrm{H}_{\mathrm{eq}}$ and $\left.2^{\prime}-\mathrm{H}_{\mathrm{eq}}\right), 3.68(2 \mathrm{H}, \mathrm{d}, J 1.5, \mathrm{OH} \times 2), 4.33(2 \mathrm{H}$, ddd, $J 13,6$ and $1.5,3-\mathrm{H}$ and $\left.3^{\prime}-\mathrm{H}\right), 6.24(2 \mathrm{H}, \mathrm{br} \mathrm{d}, J 16,7-\mathrm{H}$ and $\left.7^{\prime}-\mathrm{H}\right), 6.32\left(2 \mathrm{H}\right.$, br d, $J 11,10-\mathrm{H}$ and $\left.10^{\prime}-\mathrm{H}\right), 6.41(2 \mathrm{H}, \mathrm{d}, J$ $16,8-\mathrm{H}$ and $\left.8^{\prime}-\mathrm{H}\right), 6.71\left(2 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}\right.$ and $\left.11^{\prime}-\mathrm{H}\right) ; \delta_{\mathrm{C}}(75 \mathrm{MHz})$ $12.55\left(9-\mathrm{CH}_{3}\right.$ and $\left.9^{\prime}-\mathrm{CH}_{3}\right), 14.00\left(5-\mathrm{CH}_{3}\right.$ and $\left.5^{\prime}-\mathrm{CH}_{3}\right), 26.14$ and 30.72 (1 -gem $-\mathrm{CH}_{3}$ and 1^{\prime}-gem- $-\mathrm{CH}_{3}$), 36.82 ($\mathrm{C}-1$ and $\mathrm{C}-1$ '), 45.41 ($\mathrm{C}-2$ and $\mathrm{C}-2^{\prime}$), 69.25 ($\mathrm{C}-3$ and $\mathrm{C}-3^{\prime}$), 124.16 ($\mathrm{C}-7$ and C-7'), 127.03 (C-5 and C-5'), 130.98 (C-11 and C-11'), 134.53 ($\mathrm{C}-10$ and $\mathrm{C}-10^{\prime}$), 135.83 ($\mathrm{C}-9$ and $\mathrm{C}-9{ }^{\prime}$), 141.98 (C-8 and $\mathrm{C}-8^{\prime}$), 162.09 (C-6 and C-6'), 200.48 (C-4 and C-4') (Found: M ${ }^{+}$, 464.2938. $\mathrm{C}_{30} \mathrm{H}_{40} \mathrm{O}_{4}$ requires $M, 464.2924$).

3,3'-[(1E,3E,5E, $7 E, 9 E, 11 E, 13 E)$-3,12-Dimethyltetradeca-1,3,5,7,9,11,13-heptaene-1,14-diyl]bis[(6S)-6-hydroxy-2,4,4-trimethylcyclohex-2-enone] 2b

According to the procedure described in the preparation of the pentaenone 23a, Wittig reaction of diphosphonium salt $25{ }^{15 a}$ ($106 \mathrm{mg}, 0.23 \mathrm{mmol}$) with the aldehyde $3(112 \mathrm{mg}, 0.45 \mathrm{mmol}$) and purification of the crude product by CC (EtOAc-benzene, $1: 4$) provided the analogue $\mathbf{2 b}(48 \mathrm{mg}, 41 \%)$ as a yellow solid; $\lambda_{\max } / \mathrm{nm} 438 ; v_{\text {max }} / \mathrm{cm}^{-1} 3502(\mathrm{OH}), 1660$ (conj. $\mathrm{C}=\mathrm{O}$), 1613 and $1569(\mathrm{C}=\mathrm{C})$) $\delta_{\mathrm{H}}(500 \mathrm{MHz}) 1.21$ and 1.32 (each $6 \mathrm{H}, \mathrm{s}, 1-\mathrm{gem}-\mathrm{CH}_{3}$ and 1^{\prime}-gem $-\mathrm{CH}_{3}$), $1.81\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 13.5,2-\mathrm{H}_{\mathrm{ax}}\right.$ and $\left.2^{\prime}-\mathrm{H}_{\mathrm{ax}}\right), 1.94$ $\left(6 \mathrm{H}, \mathrm{s}, 5-\mathrm{CH}_{3}\right.$ and $\left.5^{\prime}-\mathrm{CH}_{3}\right), 1.98\left(6 \mathrm{H}, \mathrm{s}, 9-\mathrm{CH}_{3}\right.$ and $\left.9^{\prime}-\mathrm{CH}_{3}\right)$, $2.16\left(2 \mathrm{H}, \mathrm{dd}, J 13\right.$ and $6,2-\mathrm{H}_{\mathrm{eq}}$ and $\left.2^{\prime}-\mathrm{H}_{\mathrm{eq}}\right), 3.68(2 \mathrm{H}, \mathrm{d}, J 1.5$, $\mathrm{OH} \times 2), 4.32\left(2 \mathrm{H}\right.$, ddd, $J 13.5,6$ and $1.5,3-\mathrm{H}$ and $\left.3^{\prime}-\mathrm{H}\right), 6.23$ ($2 \mathrm{H}, \mathrm{d}, J 16,7-\mathrm{H}$ and $7^{\prime}-\mathrm{H}$), 6.26 ($2 \mathrm{H}, \mathrm{d}, J 12,10-\mathrm{H}$ and $10^{\prime}-\mathrm{H}$), $6.41\left(2 \mathrm{H}, \mathrm{d}, J 16,8-\mathrm{H}\right.$ and $\left.8^{\prime}-\mathrm{H}\right), 6.38-6.46\left(4 \mathrm{H}, \mathrm{m}, 12-\mathrm{H}, 12^{\prime}-\right.$ $\mathrm{H}, 13-\mathrm{H}$ and $\left.13^{\prime}-\mathrm{H}\right), 6.66\left(2 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}\right.$ and $\left.11^{\prime}-\mathrm{H}\right) ; \delta_{\mathrm{C}}(125$ $\mathrm{MHz}) 12.52\left(9-\mathrm{CH}_{3}\right.$ and $\left.9^{\prime}-\mathrm{CH}_{3}\right), 13.99\left(5-\mathrm{CH}_{3}\right.$ and $\left.5^{\prime}-\mathrm{CH}_{3}\right)$, 26.15 and $30.73\left(1-\right.$ gem $-\mathrm{CH}_{3}$ and 1^{\prime}-gem $\left.-\mathrm{CH}_{3}\right), 36.81(\mathrm{C}-1$ and C-1'), 45.42 (C-2 and C-2'), 69.22 (C-3 and C-3'), 123.85 (C-7 and $\mathrm{C}^{-} 7^{\prime}$), 126.95 ($\mathrm{C}-5$ and $\mathrm{C}-5^{\prime}$), 129.76 ($\mathrm{C}-11$ and $\mathrm{C}-11^{\prime}$), 134.36 and 134.54 ($\mathrm{C}-12, \mathrm{C}-12^{\prime}, \mathrm{C}-13$ and $\mathrm{C}-13^{\prime}$), 135.27 ($\mathrm{C}-10$ and $\mathrm{C}-10^{\prime}$), 135.38 ($\mathrm{C}-9$ and $\mathrm{C}-9{ }^{\prime}$), 142.08 ($\mathrm{C}-8$ and $\mathrm{C}-8^{\prime}$), 162.14 (C-6 and C-6'), 200.44 (C-4 and C-4') (Found: M^{+}, 516.3247. $\mathrm{C}_{34} \mathrm{H}_{44} \mathrm{O}_{4}$ requires $M, 516.3236$).

$3,3^{\prime}-[(1 E, 3 E, 5 E, 7 E, 9 E, 11 E, 13 E, 15 E)$-3,14-Dimethylhexadeca-$1,3,5,7,9,11,13,15$-octaene-1,16-diyl]bis[(6S)-6-hydroxy-2,4,4-trimethylcyclohex-2-enone] 2 c

According to the procedure described in the preparation of the
pentaenone 23a, Wittig reaction of diphosphonium salt $26^{15 a}$ ($100 \mathrm{mg}, 0.20 \mathrm{mmol}$) with the aldehyde $3(100 \mathrm{mg}, 0.40 \mathrm{mmol})$ and purification of the crude product by CC (acetone- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $5: 95)$ provided the analogue $2 \mathrm{c}(40 \mathrm{mg}, 37 \%)$ as an orange solid; $\lambda_{\text {max }} / \mathrm{nm} 452 ; v_{\text {max }} / \mathrm{cm}^{-1} 3490(\mathrm{OH}), 1660$ (conj. C=O), 1611 and $1562(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(500 \mathrm{MHz}) 1.18$ and 1.30 (each 6 H , $\mathrm{s}, 1$-gem- CH_{3} and l^{\prime}-gem- $\left.-\mathrm{CH}_{3}\right), 1.79\left(2 \mathrm{H}, \mathrm{t}, J 13.5,2-\mathrm{H}_{\mathrm{ax}}\right.$ and $\left.2^{\prime}-\mathrm{H}_{\mathrm{ax}}\right), 1.92\left(6 \mathrm{H}, \mathrm{s}, 5-\mathrm{CH}_{3}\right.$ and $\left.5^{\prime}-\mathrm{CH}_{3}\right), 1.96\left(6 \mathrm{H}, \mathrm{s}, 9-\mathrm{CH}_{3}\right.$ and $\left.9^{\prime}-\mathrm{CH}_{3}\right), 2.13\left(2 \mathrm{H}\right.$, dd, $J 13$ and $5.5,2-\mathrm{H}_{\mathrm{eq}}$ and $\left.2^{\prime}-\mathrm{H}_{\mathrm{eq}}\right)$, $3.66(2 \mathrm{H}, \mathrm{d}, J 1.5, \mathrm{OH} \times 2), 4.30(2 \mathrm{H}$, ddd, $J 13.5,5.5$ and $1.5,3-\mathrm{H}$ and $\left.3^{\prime}-\mathrm{H}\right), 6.20\left(2 \mathrm{H}\right.$, br d, $J 16,7-\mathrm{H}$ and $\left.7^{\prime}-\mathrm{H}\right), 6.23$ $\left(2 \mathrm{H}, \mathrm{br} \mathrm{d}, J 12.5,10-\mathrm{H}\right.$ and $\left.10^{\prime}-\mathrm{H}\right), 6.39\left(8 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}, 8^{\prime}-\mathrm{H}\right.$, $12-\mathrm{H}, 12^{\prime}-\mathrm{H}, 13-\mathrm{H}, 13^{\prime}-\mathrm{H}, 14-\mathrm{H}$ and $\left.14^{\prime}-\mathrm{H}\right), 6.61(2 \mathrm{H}, \mathrm{m}$, $11-\mathrm{H}$ and $\left.11^{\prime}-\mathrm{H}\right)$; $\delta_{\mathrm{C}}(75 \mathrm{MHz}) 12.51\left(9-\mathrm{CH}_{3}\right.$ and $\left.9^{\prime}-\mathrm{CH}_{3}\right)$, $13.98\left(5-\mathrm{CH}_{3}\right.$ and $\left.5^{\prime}-\mathrm{CH}_{3}\right), 26.14$ and $30.72\left(1-\mathrm{gem}-\mathrm{CH}_{3}\right.$ and 1^{\prime}-gem- CH_{3}), 36.79 ($\mathrm{C}-1$ and $\mathrm{C}-1^{\prime}$), 45.40 ($\mathrm{C}-2$ and $\mathrm{C}-2^{\prime}$), 69.22 ($\mathrm{C}-3$ and $\mathrm{C}-3^{\prime}$), 123.77 ($\mathrm{C}-7$ and $\mathrm{C}-7^{\prime}$), 126.92 ($\mathrm{C}-5$ and $\mathrm{C}-5^{\prime}$), 129.57 (C-11 and $\mathrm{C}-11^{\prime}$), 134.12, 134.29 and 134.60 (C-12, $\mathrm{C}-12^{\prime}, \mathrm{C}-13, \mathrm{C}-13^{\prime}, \mathrm{C}-14$ and $\left.\mathrm{C}-14^{\prime}\right), 135.26$ ($\mathrm{C}-9$ and $\mathrm{C}-9^{\prime}$), 135.38 ($\mathrm{C}-10$ and $\mathrm{C}-10^{\prime}$), 142.12 ($\mathrm{C}-8$ and $\mathrm{C}-8^{\prime}$), 162.14 (C-6 and $\mathrm{C}-6^{\prime}$), 200.44 (C-4 and $\mathrm{C}-4^{\prime}$) (Found: M^{+}, 542.3393. $\mathrm{C}_{36} \mathrm{H}_{46} \mathrm{O}_{4}$ requires $M, 542.3394$).

$3,3$ '-[(1E, $3 E, 5 E, 7 E, 9 E, 11 E, 13 E, 15 E, 17 E, 19 E, 21 E)-3,7,16,20-$

Tetramethyldocosa-1,3,5,7,9,11,13,15,17,19,21-undecaene-1,22-diyl]bis[(6S)-6-hydroxy-2,4,4-trimethylcyclohex-2-enone] 2d
According to the procedure described in the preparation of the pentaenone 23a, Wittig reaction of phosphonium salt 4b $(409 \mathrm{mg}, 0.84 \mathrm{mmol})$ with the dial $27(100 \mathrm{mg}, 0.46 \mathrm{mmol})$ and purification of the crude product by CC (acetone$\mathrm{CH}_{2} \mathrm{Cl}_{2}, 5: 95$) provided the analogue $\mathbf{2 d}$ ($125 \mathrm{mg}, 42 \%$) as a red solid; $\lambda_{\max } / \mathrm{nm} 484 ; v_{\max } / \mathrm{cm}^{-1} 3492(\mathrm{OH}), 1660$ (conj. $\mathrm{C}=\mathrm{O}), 1610,1576$ and $1550(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(500 \mathrm{MHz}) 1.21$ and 1.32 (each $6 \mathrm{H}, \mathrm{s}, 1$-gem- CH_{3} and l^{\prime}-gem- $\left.\mathrm{CH}_{3}\right), 1.81(2 \mathrm{H}, \mathrm{t}, J 13$, $2-\mathrm{H}_{\mathrm{ax}}$ and $\left.2^{\prime}-\mathrm{H}_{\mathrm{ax}}\right), 1.94\left(6 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}\right.$ and $\left.5^{\prime}-\mathrm{H}\right), 1.98$ and 2.00 (each $6 \mathrm{H}, \mathrm{s}, 9-\mathrm{CH}_{3}, 9^{\prime}-\mathrm{CH}_{3}, 13-\mathrm{CH}_{3}$ and $\left.13^{\prime}-\mathrm{CH}_{3}\right), 2.15(2 \mathrm{H}$, $\mathrm{dd}, J 13$ and $5,2-\mathrm{H}_{\mathrm{eq}}$ and $2^{\prime}-\mathrm{H}_{\mathrm{eq}}$, $3.69(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH} \times 2)$, $4.32\left(2 \mathrm{H}, \mathrm{br}\right.$ dd, $J 13.5$ and $5.5,3-\mathrm{H}$ and $\left.3^{\prime}-\mathrm{H}\right), 6.21(2 \mathrm{H}, \mathrm{br}$ d, $J 16.5,7-\mathrm{H}$ and $7^{\prime}-\mathrm{H}$), 6.25 and 6.29 (each 2 H , br d, $J 11.5,10-\mathrm{H}, 10^{\prime}-\mathrm{H}, 14-\mathrm{H}$ and $\left.14^{\prime}-\mathrm{H}\right), 6.38-6.48(8 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}$, $8^{\prime}-\mathrm{H}, 12-\mathrm{H}, 12^{\prime}-\mathrm{H}, 16-\mathrm{H}, 16^{\prime}-\mathrm{H}, 17-\mathrm{H}$ and $\left.17^{\prime}-\mathrm{H}\right), 6.63$ ($4 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}, 11^{\prime}-\mathrm{H}, 15-\mathrm{H}$ and $15^{\prime}-\mathrm{H}$); δ_{C} (125 MHz) 12.58 $\left(9-\mathrm{CH}_{3}\right.$ and $\left.9^{\prime}-\mathrm{CH}_{3}\right), 12.80\left(13-\mathrm{CH}_{3}\right.$ and $\left.13^{\prime}-\mathrm{CH}_{3}\right), 14.00(5-$ CH_{3} and $5^{\prime}-\mathrm{CH}_{3}$), 26.16 and 30.76 (1 -gem- $-\mathrm{CH}_{3}$ and 1^{\prime}-gemCH_{3}), 36.81 ($\mathrm{C}-1$ and $\mathrm{C}-1^{\prime}$), 45.43 ($\mathrm{C}-2$ and $\mathrm{C}-2^{\prime}$), $69.22(\mathrm{C}-3$ and $\mathrm{C}-3^{\prime}$), 123.27 ($\mathrm{C}-7$ and $\mathrm{C}-7^{\prime}$), 124.54 ($\mathrm{C}-11$ and $\mathrm{C}-11^{\prime}$), 126.81 ($\mathrm{C}-5$ and $\mathrm{C}-5^{\prime}$), 130.36 ($\mathrm{C}-15$ and $\mathrm{C}-15^{\prime}$), 133.62, 134.16 and 134.59 (C-14, C-14', C-16, C-16', C-17 and C-17'), 134.52 (C-9 and C-9'), 135.22 (C-10 and C-10'), 136.60 (C-13 and C13^{\prime}), 139.77 ($\mathrm{C}-12$ and $\mathrm{C}-12^{\prime}$), 142.38 (C-8 and C-8'), 162.26 (C-6 and C-6'), 200.43 (C-4 and C-4') (Found: M ${ }^{+}$, 648.4186. $\mathrm{C}_{44} \mathrm{H}_{56} \mathrm{O}_{4}$ requires $M, 648.4176$).

Singlet-oxygen-quenching activities

A solution of the endoperoxide ${ }^{3 d, 17}$ of 1,4-dimethylnaphthalene (40 mM in $\mathrm{CDCl}_{3} ; 50 \mathrm{~mm}^{3}$) was added to a mixture of TEMP (40 mM in $\mathrm{CDCl}_{3} ; 50 \mathrm{~mm}^{3}$), one of the analogues 2a-d ($0.01-$ $10000 \mu \mathrm{M}$ in $\mathrm{CDCl}_{3} ; 50 \mathrm{~mm}^{3}$) and $\mathrm{CDCl}_{3}\left(50 \mathrm{~mm}^{3}\right)$, and the mixture was incubated at $37^{\circ} \mathrm{C}$ for 2 min . Recording of the EPR spectrum of each mixture was started just after incubation, and an intensity (designated as S) of a signal originating from TEMP oxide radical ${ }^{18}$ was measured. The intensities of signals from a control without any analogues (designated as C) and a blank (designated as B) with only TEMP were also measured. Quenching activity (designated as Q) of each analogue was calculated using equation (1).

$$
\begin{equation*}
Q(\%)=(C-S) /(C-B) \times 100 \tag{1}
\end{equation*}
$$

Acknowledgements

We thank Drs U. Hengartner and K. Bernhard, Hoffmann-La Roche Ltd. Basel, Switzerland for chemical support.

References

1 Part 5, Y. Yamano, C. Tode and M. Ito, J. Chem. Soc., Perkin Trans. 1, 1998, 2569.
2 P. Palozza and N. Krinsky, Methods Enzymol., 1992, 213, 403.
3 (a) W. Miki, Pure Appl. Chem., 1991, 63, 141; (b) J. Terao, Lipids, 1989, 24, 659; (c) B. P. Lim, A. Nagao, J. Terao, K. Tanaka, T. Suzuki and K. Takama, Biochim. Biophys. Acta, 1992, 1126, 178; (d) N. Shimidzu, M. Goto and W. Miki, Fish. Sci., 1996, 62, 134.

4 W. R. Roush and B. B. Brown, J. Am. Chem. Soc., 1993, 115, 2268.
5 R. Zell, E. Widmer, T. Lukáč, H. G. W. Leuenberger, P. Schönholzer and E. A. Broger, Helv. Chim. Acta, 1981, 64, 2447.
6 Its stereochemistry was not confirmed.
7 J.-F. Betzer, F. Delaloge, B. Muller, A. Pancrazi and J. Prunet, J. Org. Chem., 1997, 62, 7768.

8 (a) H. E. Ensley, R. R. Buescher and K. Lee, J. Org. Chem., 1982, 47, 404; (b) H. X. Zhang, F. Guibé and G. Balavoine, J. Org. Chem., 1990, 55, 1857.
9 J. K. Stille and B. L. Groh, J. Am. Chem. Soc., 1987, 109, 813.
10 V. Farina and B. Krishnan, J. Am. Chem. Soc., 1991, 113, 9585.

11 E. Widmer, R. Zell, T. Lukáč, M. Casadei, P. Schönholzer and E. A. Broger, Helv. Chim. Acta, 1981, 64, 2405.
12 K. Sonogashira, Y. Tohda and N. Hagihara, Tetrahedron Lett., 1975, 4467.

13 F. Liu and E. Negishi, J. Org. Chem., 1997, 62, 8591.
14 M. Havránek and D. Dvorák, Synthesis, 1998, 1264.
15 (a) C. W. Spangler, R. K. McCoy, A. A. Dembek, L. S. Sapochak and B. D. Gates, J. Chem. Soc., Perkin Trans. 1, 1989, 151; (b) D. A. Evans and J. S. Johnson, J. Org. Chem., 1997, 62, 786.
16 M. Ito, Y. Hirata, K. Tsukida, N. Tanaka, K. Hamada, R. Hino and T. Fujiwara, Chem. Pharm. Bull., 1988, 36, 3328.

17 H. H. Wasserman and D. L. Larsen, J. Chem. Soc., Chem. Commun., 1972, 253.
18 L.-Y. Zang, F. J. G. M. van Kuijk, B. R. Misra and H. P. Misra, Biochem. Mol. Biol. Int., 1995, 37, 283.

[^0]: \dagger We have employed the numbering system used in the carotenoids

